

pretation is further supported by the observation that all the tissues had greatly reduced noradrenaline levels after treatment with 6-hydroxydopamine whether assayed biochemically, or assessed by histochemical fluorescence microscopy. Furthermore, responses to the sympathomimetic amine, tyramine, were greatly reduced or abolished in those tissues (heart, ear artery, renal artery and portal vein) where its mode of action is known to involve the release of noradrenaline from sympathetic nerves.

It is concluded that pretreatment of rabbits with 6-hydroxydopamine according to the dose schedule described above, produces marked impairment of sympathetic neuronal function in the tissues examined.

Supported in part by a grant from the Migraine Trust.

REFERENCES

FINKLEMAN, B. (1930). On the nature of inhibition in the intestine. *J. Physiol., Lond.*, **70**, 145-157.

FURCHGOTT, R. F. & BHADRAKOM, S. (1953). Reactions of strips of rabbit aorta to epinephrine, isopropyl-arterenol, sodium nitrite and other drugs. *J. Pharmac. exp. Ther.*, **108**, 129-143.

KELLY, M. J. (1971). Receptors for dopamine in some isolated vascular preparations. *M.Sc. Thesis, University of Manchester*.

DE LA LANDE, I. S. & RAND, M. J. (1965). A simple isolated nerve-blood vessel preparation. *Aust. J. exp. Biol./med. Sci.*, **43**, 639-656.

LANGENDORFF, O. (1895). Untersuchungen am überlebenden Säugetierherzen. *Pflügers Arch. ges. Physiol.*, **61**, 291-332.

SPRIGGS, T. L. B., LEVER, J. D., REES, P. M. & GRAHAM, J. D. P. (1966). Controlled formaldehyde-catecholamine condensation in cryostat sections to show adrenergic nerves by fluorescence. *Stain Technol.*, **41**, 323-327.

THOENEN, H. (1972). Surgical, immunological and chemical sympathectomy. Their application in the investigation of the physiology and pharmacology of the sympathetic nervous system. In: *Catecholamines*, Ed. Blaschko, H. & Muscholl, E. Springer-Verlag, Berlin. pp. 813-844.

WELCH, A. S. & WELCH, B. L. (1969). Solvent extraction method for simultaneous determination of norepinephrine, dopamine, serotonin, and 5-hydroxyindoleacetic acid in a single mouse brain. *Analytical Biochem.*, **30**, 161-179.

Prostaglandin E₂, inflammation and pain threshold in rat paws

D. C. KUHN and A. L. WILLIS

Department of Pharmacology, Hoffman-La Roche Inc., Nutley, New Jersey, U.S.A.

We have examined relationships between disappearance of injected prostaglandin (PG) E₂ from the paws of rats and the duration of the PG-induced oedema and hyperalgesia.

Prostaglandin E₂ (1 µg, 0.1 ml), containing ³H-PGE₂ (0.47 ng, 0.12 µCi) was injected into the subplantar surface of hind paws in rats. At various times after injection, 'pain threshold' (Randall & Sellito, 1957) was measured and the paws excised, weighed and frozen in liquid nitrogen. The prostaglandins were extracted (at pH 2.8) from crushed paw material into ethyl acetate. Radioactivity in the extracts was determined by liquid scintillation counting.

Extractable radioactivity, disappeared very rapidly from the paws, and when peak swelling was attained (20 min), the equivalent of only 25 ng of PGE₂ could be recovered. The oedema produced by the PGE₂ was short lived, decaying at a rate which was superficially similar to, but slower than disappearance of the injected PGE₂. In contrast, the hyperalgesia developed more slowly and lasted for at least 6 h, even though the amounts of originally injected PG were apparently very low (equivalent to about 0.7 ng of PGE₂).

The occurrence of hyperalgesia has been reported following or during injection or infusion (respectively) of E-type PGs into human skin (Solomon, Juhlin & Kirschenbaum, 1968; Juhlin & Michaelsson, 1969; Ferreira, 1972). However, chronic hyperalgesia is produced after prolonged subdermal infusion of low concentrations of PGE (Ferreira, 1972) or within four days of repeated daily injections of PGE₂ (1-2 µg) in rat paws (Willis & Cornelsen, 1973). A little (equivalent to about 0.4 ng PGE₂) radioactivity could still be extracted from the paws at 24 h, and it is possible that some of the PGE₂ could have been converted to poorly extractable material. Thus the chronic hyperalgesia in rat paws might be partly due to accumulation of PG metabolites which produce hyperalgesia and this is being investigated.

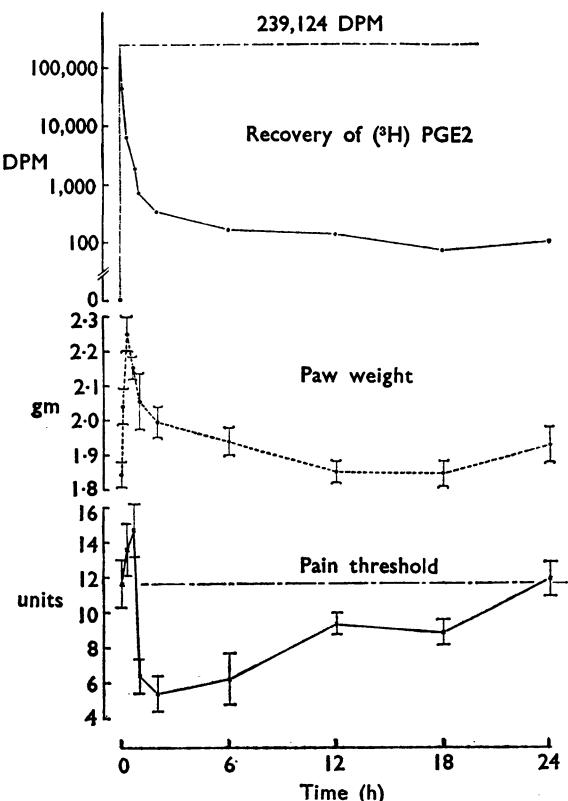


FIG. 1. Temporal relationship between disappearance of injected PGE₂, paw weight and 'pain threshold'.

Results shown are means (\pm S.E.M.) for 16 pairs.

REFERENCES

FERREIRA, S. H. (1972). Prostaglandins, aspirin-like drugs and analgesia. *Nature, New Biology*, **240**, 200-203.
 JUHLIN, S., & MICHAELSSON, G. (1969). Cutaneous vascular reactions to prostaglandins in health subjects and in patients with urticaria and atopic dermatitis. *Acta. Derm. Vener. (Stockholm)*, **49**, 251-261.
 RANDALL, L. O. & SELITTO, J. J. (1957). A method for measurement of analgesic activity on inflamed tissue. *Arch. Int. Pharmacodyn.* **111**, 409-419.
 SOLOMON, L. M., JUHLIN, L. & KIRSCHENBAUM, M. B. (1968). Prostaglandins on cutaneous vasculature. *J. Invest. Derm.* **51**, 280-282.
 WILLIS, A. L. & CORNELSEN, M. (1973). Repeated injection of prostaglandin E₂ in rat paws induces chronic swelling and a marked decrease in pain threshold. *Prostaglandins*, **3**, 353-357.

A method for perfusing the whole rabbit ear with homologous blood

C. NICOL (introduced by A. G. H. BLAKELEY)

Department of Pharmacology, University of Glasgow, Glasgow G12 8QQ

Dutch rabbits of either sex, weighing 1.5-3.0 kg are used. The rabbit is anaesthetized with 4% Halothane in a 2:1 mixture of N₂O/O₂. The trachea, external jugular vein and carotid artery are cannulated. The rabbit is injected with 4,000 I.U. Heparin and 50 µg prostaglandin E₁ to prevent clotting of the blood and aggregation of the platelets, Blakeley, Brown, Dearnaley & Woods (1969). Approximately 30-40 ml of warm oxygenated Krebs' bicarbonate saline is infused into the rabbit and the animal is bled out. The ears are then cut off close to the head, one being used as a control. The skin is shaved over the central artery near the base of the ear. The artery is then exposed by blunt